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Abstract. The non-divergent diagrams describing two-gluon exchange and annihilation between quarks
and antiquarks are calculated in the Feynman gauge, based on quantum chromodynamics in a spherical
cavity. Using the experimental N , ∆, Ω, and ρ masses to fit the free parameters of the M.I.T. bag model,
the predicted states agree very well with the observed low-lying hadrons. As expected, the two-gluon
annihilation graphs lift the degeneracy of the π and η, while the ρ and ω remain degenerate. Diagonalizing
the η − η′ subspace Hamiltonian yields a very good value for the mass of the η meson.

1 Introduction

Cavity quantum chromodynamics, i.e. quantum chromo-
dynamics with field operators obeying the linear bound-
ary conditions of the M.I.T. bag model on a static sphere
(CQCD) [1–3], is a consistent relativistic quantum field
theory on its own. Indeed, CQCD may be expanded per-
turbatively [4], and the diverging Feynman graphs have
been shown to be renormalizable [5–8], e.g. in the MS
scheme. Taking into account the quadratic boundary con-
dition of the M.I.T. bag model, the properties of the low-
energy hadrons have been calculated successfully to order
αs [1–3].

However, this good agreement has been obtained by
neglecting the self-energies of the quarks. More recently,
the self-energies have been calculated, but unfortunately
they turned out to be quite large [6–8], thus spoiling the
good agreement to order αs. One has therefore argued that
the self-energies should perhaps be discarded, because the
boundary conditions already account for at least part of
them.

Moreover, it has been pointed out that the perturba-
tive expansion of CQCD in terms of a power series in the
large strong coupling constant may be ill-defined. How-
ever, one can argue that the actual value of αs is immate-
rial, as long as the spectrum fits, order by order, the same
hadronic states, N , ∆, Ω, and ρ, thus fixing the free pa-
rameters of the model. Furthermore, it seems obvious that
perturbative expansion in terms of cavity modes, rather
than plane waves, is a much better starting point for the
description of finite size hadrons.

In spite of all these arguments, it is surprising to note
that there was in the recent past little enthusiasm to de-
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velop CQCD beyond first order to check whether these
expectations are actually fulfilled or not. It is, therefore,
the purpose of this paper to clarify this issue, by calcu-
lating all non-divergent graphs to order α2

s in CQCD that
can be written in the form of two-body operators, and
to compare the resultant low-lying hadron spectrum with
the experimental data. We are concentrating only on the
two-body interactions in this paper. A calculation of the
nondivergent three-body interactions for massless quarks
has been performed showing that they are of much less
importance than the two-body interactions to order α2

s .
These interactions leading to a three-body force are not
included in the following.

2 Second order energy shift

Using the symmetric form of the Gell-Mann and Low the-
orem due to Sucher [9], we can write the energy shift of
an eigenstate |φk〉 of the unperturbed Hamiltonian as

Ek − E0
k = lim

η→1
ε→0+

iε

2
∂〈φ̂k|Sε

η|φ̂k〉c/∂η

〈φ̂k|Sε
η|φ̂k〉c

, (1)

where the subscript c indicates that only connected dia-
grams are included. The adiabatic S-matrix may be ex-
panded as

Sε
η = 1 +

∞∑
n=1

Sε(n)
η (2)

with

Sε(n)
η =

(iη)n

n!

∫ ∞

−∞
dt1

. . .

∫ ∞

−∞
dtn T

[
Ĥε

int(t1) · · · Ĥε
int(tn)

]
. (3)



332 M. Schumann et al.: Hadron masses in cavity quantum chromodynamics to order α2
s

∆E = lim
ε→0+

2iε
∫
d4x1 d

4x2 d
4x3 d

4x4 e
−ε(|t1|+|t2|+|t3|+|t4|)

×
〈
φ̂k

∣∣∣∣∣T
[(

ˆ̄ψg
λa

2
/̂Aaψ̂

)
x1

(
ˆ̄ψg
λb

2
/̂Abψ̂

)
x2

(
ˆ̄ψg
λc

2
/̂Acψ̂

)
x3

(
ˆ̄ψg
λd

2
/̂Adψ̂

)
x4

]∣∣∣∣∣ φ̂k

〉
. (5)

Fig. 1. Finite Feynman dia-
grams of first and second order
in αs

Here, the parameter ε > 0 introduces the adiabatic switch-
ing on of the interaction Hamiltonian Ĥε

int(t) in the Dirac
picture. Expanding ∆E up to second order in αs, we find
that the only non-divergent terms contributing to ∆E are
〈Sε(2)〉c and 〈Sε(4)〉c, and thus ∆E reads to that order

∆E = lim
ε→0+

iε
[
〈S(2)〉c + 2 〈S(4)〉c

]
. (4)

The first term gives rise to the well-known one-gluon ex-
change and annihilation graphs [4], while the second con-
tains the two-gluon exchange and annihilation graphs
which we would like to evaluate in this paper.

Stoddart et al. [10] have calculated the two-body oper-
ators in second order including six of the 24 possible time-
orderings for both the two-gluon exchange and annihila-
tion graphs. Here we take into account all time-orderings,
using the results of [10] as a check. In fact, all the results
of [10] can be reproduced with our method.

As an example, let us calculate the ‘straight’ two-gluon
exchange graph (Fig. 1(s2gx)). The energy shift due to
this diagram is given by (5) (on top of the page). The
time integrals are readily evaluated and the space integrals
combine into quark-gluon vertex integrals defined by

QmΣ
nn′ = i

∫
d3x ūn(x) γµ un′(x) aµ

mΣ(x), (6)

where un(x) and a
µ
mΣ(x) are the quark and gluon cavity

modes, respectively [11]. The result is

∆E = −g4
〈
φ̂k

∣∣∣∣∣a†
c′mfa

†
d′nf ′

(
λa

2

)
c′j

(
λa

2

)
d′k

(
λb

2

)
jc

×
(
λb

2

)
kd

adni′acmi

∣∣∣∣ φ̂k

〉
δ(εi + εi′ − εf − εf ′)

×
∑
ΣΣ′

∑
qq′

∑
mm′

gΣΣ gΣ′Σ′

4ΩΣ
mΩ

Σ′
m′

QS. (7)

Here, we have used the quark and gluon propagators in the
Feynman gauge [11]. The subscripts of the quark creation

and annihilation operators stand for the color, flavor, and
orbital quantum numbers, respectively. Repeated indices
on the Gell-Mann matrices indicate a summation accord-
ing to the Einstein convention. The quark-gluon vertex in-
tegrals are combined into the function QS which depends
on all the quark and gluon quantum numbers involved in
the process,

QS = QmΣ
fq QmΣ

f ′q′ Qm′Σ′
qi Qm′Σ′

q′i′ EI

−QmΣ
fq QmΣ

f ′−q′ Qm′Σ′
qi Qm′Σ′

−q′i′ EII

−QmΣ
f−q Q

mΣ
f ′q′ Qm′Σ′

−qi Qm′Σ′
q′i′ EIII

+QmΣ
f−q Q

mΣ
f ′−q′ Qm′Σ′

−qi Qm′Σ′
−q′i′ EIV. (8)

The terms EI to EIV, given in Appendix A, are sums over
the energy denominators that arise from the time integra-
tions.

The energy shift can be interpreted as a two-body op-
erator V̂ in second quantization sandwiched between the
states |φk〉. This operator can be translated into first quan-
tization, yielding

V12 =
α2

S

R
F 2

12

∑
Λ

ν12(Λ), (9)

where Λ stands for the total exchanged angular momen-
tum between the quarks. F12 denotes the two-body oper-
ator F12 = F1 · F2.

Expanding the quark-gluon vertex integrals into angu-
lar and radial parts (SmΣ

nn′ ), we arrive after some algebra
at

ν12(Λ) = −
∑
ΣΣ′

∑
jqjq′

∑
J1J2

∑
λ

gΣΣηΣ g
Σ′Σ′

ηΣ′

4ΩΣ
mRΩ

Σ′
m′R

×(−1)J1+J2+ΛGJ1J2(f, q, i)GJ1J2(f
′, q′, i′) Λ̂2

×
{
jf J1 jq
J2 ji Λ

}{
jf ′ J1 jq′

J2 ji′ Λ

}
(−1)1+µf′ −µi

×
(
jf Λ ji

−µf λ µi

)(
jf ′ Λ ji′

−µf ′ −λ µi′

)
S
R3 . (10)
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Table 1. The numerical results for the coefficients of the two-body operators as defined in
(15). The abbreviations stand for one-gluon exchange, straight two-gluon exchange, crossed
two-gluon exchange, straight two-gluon annihilation, and crossed two-gluon annihilation,
respectively. The second row gives the appropriate color factors

1gx s2gx c2gx s2ga c2ga
C12 F12 F 2

12 F12
(
F12 + 3

2

)
2

( 16
27 − 1

18F12
)

2
(− 2

27 − 5
9F12

)
m1 = 0 A 0.009795 −0.406119 0.146124 0.077642 0.286519
m2 = 0 B −0.708080 0.747443 −0.190998 0.003926 −0.331505

m1 = 0 A 0.022668 −0.398787 0.105459 0.020012 0.094710
m2 = ms B −0.566556 0.613761 −0.074720 −0.015174 −0.092402

m1 = ms A 0.052685 −0.422564 0.067182 −0.037616 −0.084483
m2 = ms B −0.457013 0.551227 0.009522 −0.017055 0.036234

Here, the summation over the radial quantum numbers of
the intermediate quarks and gluons have been omitted for
simplicity. The factors G and S are defined as

GJ1J2(f, q, i) = ̂f ̂i ̂
2
q Ĵ1Ĵ2 (−1)jf +ji−jq

×
(
jf J1 jq
1
2 0 − 1

2

)(
jq J2 ji
1
2 0 − 1

2

)
(11)

and

S = SmΣ
fq SmΣ

f ′q′ Sm′Σ′
qi Sm′Σ′

q′i′ EI

−SmΣ
fq SmΣ

f ′−q′ Sm′Σ′
qi Sm′Σ′

−q′i′ EII

−SmΣ
f−q S

mΣ
f ′q′ Sm′Σ′

−qi Sm′Σ′
q′i′ EIII

+SmΣ
f−q S

mΣ
f ′−q′ Sm′Σ′

−qi Sm′Σ′
−q′i′ EIV . (12)

Since we are interested in the interactions of quarks
and antiquarks in the ground-state, we can restrict our-
selves to jn = 1

2 with n = i, i′, f, f ′, for which (10) sim-
plifies to

ν12(0) = −
∑
ΣΣ′

∑
Jjqjq′

gΣΣηΣ g
Σ′Σ′

ηΣ′

4ΩΣ
mRΩ

Σ′
m′R

̂2q ̂
2
q′ Ĵ2 δJ1J2

×
(

1
2 J jq
1
2 0 − 1

2

)2(
1
2 J jq′
1
2 0 − 1

2

)2 S
R3 , (13)

ν12(1) = −8 S2
12

∑
ΣΣ′

∑
J1J2jqjq′

gΣΣηΣ g
Σ′Σ′

ηΣ′

4ΩΣ
mRΩ

Σ′
m′R

×(−1)J1+J2−jq−jq′ ̂2q ̂
2
q′ Ĵ2

1 Ĵ
2
2

×
{

1
2 J1 jq
J2

1
2 1

}{
1
2 J1 jq′

J2
1
2 1

}(
1
2 J1 jq
1
2 0 − 1

2

)

×
(
jq J2

1
2

1
2 0 − 1

2

)(
1
2 J1 jq′
1
2 0 − 1

2

)

×
(
jq′ J2

1
2

1
2 0 − 1

2

)
S
R3 . (14)

The ν12 can now be determined numerically. We note that
our method differs from that of [10] in which the sum
over all intermediate states coupled to exterior states with
j = 0 or j = 1 was calculated, while here we evaluate the
coefficients of the two-body operators directly.

3 Results and discussion

The two-body operators for the energy shifts due to the
interactions not discussed above may be derived in the
same manner. In the following, we take all the two-body
interactions into account. The two-body operators of the
energy shifts can be written as

V
(1gx)
12 = αs C

(1gx)
12

(
A(1gx) +B(1gx) S12

)
(15a)

for the one-gluon exchange graph,

V
(2gx)
12 = α2

s C
(2gx)
12

(
A(2gx) +B(2gx) S12

)
(15b)

for the straight and crossed two-gluon exchange graphs,
and

V
(2ga)
12 = α2

s (
1
4 − T12)C

(2ga)
12

(
A(2ga) +B(2ga) S12

)
(15c)

for the straight and crossed two-gluon annihilation graphs.
The two-body operators C12 and the coefficients A and B
are found in Table 1. V12 is given in natural units �c/R,
R being the cavity radius. S12, T12 and F12 stand for the
product of the spin, isospin, and color operators of the two
external particles, respectively.

The one-gluon annihilation graph only contributes to
the energy shifts of quark-antiquark pairs with the quan-
tum-numbers of a gluon. These do not occur in the
hadrons considered here. However, for completeness we
quote the resulting two-body operator as well,

V
(1ga)
12 = 0.187505αs

( 1
4 − T12

)
× (F12 + 4

3

) (
S12 + 3

4

)
. (16)

At first sight, the results for the two-gluon exchange
and annihilation seem to disagree with those previously
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Fig. 2. The hadron spectrum

obtained by Stoddart et al. [10], but since, in contrast to
[10], we have included all the time-ordered graphs, this
is not surprising. If the coefficients for the two-gluon ex-
change diagrams are calculated to the same maximal en-
ergy including the time-ordered diagrams calculated in
[10] only, we are able to reproduce those results. For the
two-gluon annihilation graphs, we obtain the same result
for the energy-shift of a quark-antiquark pair in a state
j = 0, even though our coefficients differ from those of
[10] for the unphysical case j = 1.

Using the mass formula of the M.I.T. bag model [1–3],

M =
4
3
(4π B)1/4Ω3/4, (17)

where B is the bag constant and Ω is the total energy of
the state in units of �c/R, we arrive at the mass spectrum
for the low-lying hadrons (Fig. 2). The total energy Ω is
of the general form

Ω = Nω − Z + V1αs + V2α
2
s , (18)

where N is the number of quarks, ω the single particle
energy, Z the vacuum energy, V1 and V2 are the first and
second order energy shifts, respectively. Consistent with
the philosophy mentioned above, we neglect possible con-
tributions of order αs and α2

s to ω and Z. The masses

of the less problematic hadrons, i.e. the nucleon, the ∆-
resonance, and the ρ-meson, are used to fix the parame-
ters αs, B and Z. The Ω−-hyperon fixes the mass of the
strange quark. The parameters obtained are

αs = 1.008, (19a)
Z = 1.471, (19b)

B1/4 = 158.0 MeV (19c)

ms = 1.445 fm−1 = 285.1 MeV. (19d)

The fact that including higher order graphs lowers the
value of αs from 2.2 [12] in first order to just over unity
in second order is very encouraging.

The two-gluon annihilation graphs lift the degeneracy
of the π and the η mesons while keeping the ρ and ω de-
generate. As we are able to calculate the diagonal and off-
diagonal matrix elements due to two-gluon annihilation,
we may follow the procedure outlined by Donoghue and
Gomm [13] and diagonalize the Hamilton matrix, which
in the basis (uū+ dd̄)/

√
2 and ss̄ reads

Ω̂ =

(
Ω11 Ω12

Ω21 Ω22

)
, (20)

with

Ω11 = 2ωu − Z + αs V1(u → u)
+α2

s (V2,e(u → u) + 2V2,a(u → u)) (21a)

Ω12 =
√
2α2

s V2,a(u → s) (21b)

Ω21 =
√
2α2

s V2,a(s → u) (21c)
Ω22 = 2ωs − Z + αs V1(s → s)

+α2
s (V2,e(s → s) + V2,a(s → s)) . (21d)

Here, u denotes a massless quark, s a strange quark, and
the labels e and a refer to interactions due to gluon ex-
change and annihilation. We differ slightly from the proce-
dure of Donoghue and Gomm [13], as they use the experi-
mental values of the pion and kaon masses in their calcu-
lation. Deriving the masses of η and η′ in the framework
of the M.I.T. bag model by diagonalizing the submatrix
Ω̂ and inserting the eigenvalues into (17), we obtain

mη = 534 MeV, (22a)
mη′ = 742 MeV, (22b)

with a mixing angle of 33◦. The resulting η mass is very
close to the experimental value of mη = 547 MeV, while
the η′ mass is too low compared with mη′ = 958 MeV.
However, here we have only taken into account contribu-
tions from massless and strange quarks to the mass of the
η′. The η′ meson could contain a significant cc̄ compo-
nent which might well account for the remaining differ-
ence, since heavy quark masses have an important influ-
ence on the energy eigenvalues.
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As one can see in Fig. 2, the fit is very good for the
masses of the baryons. The splitting between the Λ and
the Σ is much better than in the calculation to first order
in αs [12]. However, the predictions for the vector mesons
φ and K∗ are still too high, while for the pseudoscalar
mesons, π, K, η and η′, they are too low.

The fit only takes into account the two-body diagrams
calculated in this paper, but none of the divergent graphs
to order α2

s , i.e. those that have a loop on any of the exter-
nal or internal lines or vertices in Figs. 1(1gx) and 1(1ga).
These divergent graphs should be included to make the
second order energy shift gauge invariant. However, even
though the cavity renormalization techniques have been
developed [5–8], the numerical effort required to calculate
such graphs is considerable1 and beyond the scope of this
paper. In any case, these contributions are of the same
form as the two-body operators for one-gluon exchange
and annihilation. They will merely renormalize the first-
order contribution by a factor. Thus the part which is or-
thogonal to the first-order contribution will still be gauge
independent. The fit has been found without the intro-
duction of this factor.

4 Conclusion

We have calculated the non-diverging Feynman diagrams
up to second order in αs in the framework of cavity quan-
tum chromodynamics and obtained the two-body oper-
ators for the energy shifts. The free parameters of the
model, the strong coupling constant αs, the zero-point en-
ergy Z0, the bag pressure B, and the mass of the strange
quark ms, are fixed by four out of the sixteen available
masses of the hadrons containing only up, down, and
strange quarks coupled to total angular momentum of up
to 3/2. The calculated masses agree very well with the ex-
perimental data. It is especially noteworthy, that the mass
of the η-meson can be calculated by diagonalizing the η–
η′ subspace Hamiltonian without introducing any further
parameters into the model.

The inclusion of second order interactions leads to a
much smaller value of αs (≈ 1) than only considering first
order terms (αs > 2). Self-energies will be included in
future work, but at the moment we neglect them as they
might be taken care of by the boundary conditions already.

There is still a lot of work ahead, to complete the cal-
culations in cavity QCD to order α2

s . This includes the
evaluation of divergent diagrams, but also the calculation
of other observables than the masses, e.g. the magnetic
moments, charge radii, and the ratio gA/gV .
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1 The regularization procedure relies on delicate cancella-
tions between oscillating terms.

Appendix A
“Straight” two-gluon exchange
energy-denominators

EI =
[
(εq′ − εi′ +ΩΣ′

m′)(εf ′ − εi′ +ΩΣ
m +ΩΣ′

m′)

×(εq − εf +ΩΣ
m)
]−1

+
[
(εq′ − εi′ +ΩΣ′

m′)

×(−εi − εi′ + εq + εq′)(εq − εf +ΩΣ
m)
]−1

+
[
(εq − εi +ΩΣ′

m′)(−εi − εi′ + εq + εq′)

×(εq − εf +ΩΣ
m)
]−1

+
[
(εq′ − εi′ +ΩΣ′

m′)

×(−εi − εi′ + εq + εq′)(εq′ − εf ′ +ΩΣ
m)
]−1

+
[
(εq − εi +ΩΣ′

m′)(−εi − εi′ + εq + εq′)

×(εq′ − εf ′ +ΩΣ
m)
]−1

+
[
(εq − εi +ΩΣ′

m′)

×(εf − εi +ΩΣ
m +ΩΣ′

m′)(εq′ − εf ′ +ΩΣ
m)
]−1

(A.1)

EII =
[
(εq′ + εf ′ +ΩΣ

m)(εf ′ − εi′ +ΩΣ
m +ΩΣ′

m′)

×(εq − εf +ΩΣ
m)
]−1

+
[
(εq′ + εf ′ +ΩΣ

m)

×(εf ′ − εi + εq + εq′ +ΩΣ
m +ΩΣ′

m′)

×(εq − εf +ΩΣ
m)
]−1

+
[
(εq − εi +ΩΣ′

m′)

×(εf ′ − εi + εq + εq′ +ΩΣ
m +ΩΣ′

m′)

×(εq − εf +ΩΣ
m)
]−1

+
[
(εq′ + εf ′ +ΩΣ

m)

×(εf ′ − εi + εq + εq′ +ΩΣ
m +ΩΣ′

m′)

×(εq′ + εi′ +ΩΣ′
m′)
]−1

+
[
(εq − εi +ΩΣ′

m′)

×(εf ′ − εi + εq + εq′ +ΩΣ
m +ΩΣ′

m′)

×(εq′ + εi′ +ΩΣ′
m′)
]−1

+
[
(εq − εi +ΩΣ′

m′)

×(εf − εi +ΩΣ
m +ΩΣ′

m′)(εq′ + εi′ +ΩΣ′
m′)
]−1

(A.2)

EIII =
[
(εq′ − εi′ +ΩΣ′

m′)(εf ′ − εi′ +ΩΣ
m +ΩΣ′

m′)

×(εq + εi +ΩΣ′
m′)
]−1

+
[
(εq′ − εi′ +ΩΣ′

m′)

×(εf − εi′ + εq + εq′ +ΩΣ
m +ΩΣ′

m′)

×(εq + εi +ΩΣ′
m′)
]−1

+
[
(εq′ − εi′ +ΩΣ′

m′)

×(εf − εi′ + εq + εq′ +ΩΣ
m +ΩΣ′

m′)

×(εq′ − εf ′ +ΩΣ
m)
]−1

+
[
(εq + εf +ΩΣ

m)

×(εf − εi′ + εq + εq′ +ΩΣ
m +ΩΣ′

m′)
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×(εq + εi +ΩΣ′
m′)
]−1

+
[
(εq + εf +ΩΣ

m)

×(εf − εi′ + εq + εq′ +ΩΣ
m +ΩΣ′

m′)

×(εq′ − εf ′ +ΩΣ
m)
]−1

+
[
(εq + εf +ΩΣ

m)

×(εf − εi +ΩΣ
m +ΩΣ′

m′)(εq′ − εf ′ +ΩΣ
m)
]−1

(A.3)

EIV =
[
(εq′ + εf ′ +ΩΣ

m)(εf ′ − εi′ +ΩΣ
m +ΩΣ′

m′)

×(εq + εi +ΩΣ′
m′)
]−1

+
[
(εq′ + εf ′ +ΩΣ

m)

×(εf + εf ′ + εq + εq′)(εq + εi +ΩΣ′
m′)
]−1

+
[
(εq + εf +ΩΣ

m)(εf + εf ′ + εq + εq′)

×(εq + εi +ΩΣ′
m′)
]−1

+
[
(εq′ + εf ′ +ΩΣ

m)

×(εf + εf ′ + εq + εq′)(εq′ + εi′ +ΩΣ′
m′)
]−1

+
[
(εq + εf +ΩΣ

m)(εf + εf ′ + εq + εq′)

×(εq′ + εi′ +ΩΣ′
m′)
]−1

+
[
(εq + εf +ΩΣ

m)

×(εf − εi +ΩΣ
m +ΩΣ′

m′)(εq′ + εi′ +ΩΣ′
m′)
]−1

(A.4)
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